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Humans have a limited amount of cognitive resources to process various cognitive operations at a given
moment. The Source of Activation Confusion model of episodic memory proposes that resources are
consumed during each processing, and once depleted, they need time to recover gradually. This has been
supported by a series of behavioral findings in the past. However, the neural substrate of the resources is not
known. In the present study, over an existing electroencephalogram data set of a free recall task (Kahana et al.,
2022), we provided a neural index reflecting the amount of cognitive resources available for forming new
memory traces. Unique to our approach, we obtained the neural index not through correlating neural patterns
with behavior outcomes or experimental conditions, but by demonstrating its alignment with a latent quantity
of cognitive resources inferred from the Source of Activation Confusion model. In addition, we showed that
the identified neural index can be used to propose novel hypothesis regarding other long-term memory
phenomena. Specifically, we found that according to the neural index, neural encoding patterns for
subsequently recalled items correspond to greater available cognitive resources compared with those for
subsequently unrecalled items. This provides a mechanistic account for the long-established subsequent
memory effects (i.e., differential neural encoding patterns between subsequently recalled vs. subsequently
unrecalled items), which has been previously associated with attention, fatigue, and properties of the stimuli.
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Humans are only able to process and maintain a relatively small
amount of information at any given moment, and one explanation,
common to many models of working memory, is that processing
depends on a limited amount of cognitive resources (Anderson
etal., 1996; Ma et al., 2014; Oberauer et al., 2016). Even though, in
contrast, long-term memory (LTM) is often considered to have
unlimited capacity, at least some theories assume that the rate of
encoding in LTM depends on the amount of working memory
resources available at the time of encoding (Atkinson & Shiffrin,
1968; Popov & Reder, 2020; Reder et al., 2007). For example, the
Source of Activation Confusion (SAC) model of episodic memory
(Popov & Reder, 2020; Reder et al., 2000, 2007) assumes that
each time an item is stored in LTM, its encoding depletes a fixed
proportion of the currently available resources and that the strength of
the resulting memory trace is proportional to the amount of resources
assigned to it. The amount of resources is finite, and once depleted,
it needs time to recover gradually (i.e., resource-depletion-and-

recovery assumption). This resource assumption has been supported
recently by numerous behavioral findings (Kowialiewski et al.,
2021; Mizrak & Oberauer, 2021; Oberauer, 2022; Popov et al., 2019,
2021; Popov & Reder, 2020). Despite the behavioral evidence, this
resource-depletion-and-recovery assumption has never been tested
on neural data and we currently do not know what the biological or
neural substrate is of the proposed limited resources.

In this article, we establish a neural signature indexing the amount
of resources available, providing further support for the proposed
limited resources. To determine such a neural index of resource
availability, we used a free recall paradigm where participants were
asked to remember a list of consecutively presented words and
later to recall all the words from the list in any order. We used the
power spectrum pattern of the electroencephalogram (EEG) signal
during the encoding of a word as the key neural signature to derive
the amount of available cognitive resources. Consistent with the
SAC'’s resource-depletion-and-recovery assumption, we assume that

Aaron S. Benjamin served as action editor.

The analysis code and data are available on Rutgers Box at https:/
rutgers.box.com/s/mfx50eea92e6giphgwck8405127p3vxu. This study was
not preregistered. This work was supported by a startup fund awarded to
Qiong Zhang by Rutgers University, New Brunswick.

This work is licensed under a Creative Commons Attribution-Non
Commercial-No Derivatives 4.0 International License (CC BY-NC-ND 4.0;
https://creativecommons.org/licenses/by-nc-nd/4.0). This license permits copy-
ing and redistributing the work in any medium or format for noncommercial use
provided the original authors and source are credited and a link to the license is
included in attribution. No derivative works are permitted under this license.

SiMa played a lead role in data curation, formal analysis, and investigation

and an equal role in conceptualization, methodology, writing—original draft,
and writing—review and editing. Vencislav Popov played a supporting role in
formal analysis and supervision and an equal role in conceptualization,
investigation, methodology, writing—original draft, and writing—review and
editing. Qiong Zhang played a lead role in funding acquisition, methodology,
and supervision and an equal role in conceptualization, investigation,
writing—original draft, and writing-review and editing.

Correspondence concerning this article should be addressed to Vencislav
Popov, Department of Psychology, University of Ziirich, Binzmiihlestrasse 14,
Box 5, CH-8050 Ziirich, Switzerland, or Qiong Zhang, Department of
Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ
08854, United States. Email: vencislav.popov@gmail.com or giong.z@
rutgers.edu


https://rutgers.box.com/s/mfx50eea92e6giphgwck8405127p3vxu
https://rutgers.box.com/s/mfx50eea92e6giphgwck8405127p3vxu
https://creativecommons.org/licenses/by-nc-nd/4.0
mailto:vencislav.popov@gmail.com
mailto:qiong.z@rutgers.edu
mailto:qiong.z@rutgers.edu
https://doi.org/10.1037/xlm0001364

2 MA, POPOV, AND ZHANG

the available cognitive resources are at their fullest at the beginning
of each list. We therefore defined the power spectrum pattern of
encoding the first word in the list as a template pattern for maximum
resources. We then measured how much the encoding patterns of
other words are similar to this template pattern. We used the pattern
similarity as an index of resource availability—we reasoned that the
more a pattern is similar to that of the maximum possible resources,
that is, neural pattern at the beginning of each list, the more resources
are available and the higher the resource availability index value
will be.

To validate the neural index of resource availability, we used
a model-based approach. We fit the SAC model to two recall
behavioral findings that according to the model can be explained by
differential resource consumption during encoding—the primacy
serial position effect (Murdock, 1962; Oberauer, 2022) and the
sequential effect of word frequency (Popov & Reder, 2020). Based
on the fit to the recall data, the model infers the amount of resources
that are available during the encoding of each word on the list. If
the identified neural signature represents resource availability, it
should index an amount of available cognitive resources consistent
with that inferred from the recall performance using the SAC model.
This will both validate the neural index of resource availability and
provide a strong test of the SAC’s resource-depletion-and-recovery
assumption as a different portion of the data is used for deriving the
neural index (i.e., neural data during the encoding phase) than for
fitting the SAC model (i.e., behavioral data during the recall phase).
The two relevant behavioral effects are as follows:

1. Primacy serial position effect—A key aspect of delayed
free recall is the primacy effect—recall probability is
often highest for the first presented item, and it decreases
gradually with the serial position until it asymptotes in the
middle of the list (Murdock, 1962). Previous fits of the
SAC model have shown that the resource-depletion-and-
recovery mechanism can account not only for the main
effect of primacy (Popov & Reder, 2020) but also for
the fact that the primacy effect is steeper with faster
presentation rates (Oberauer, 2022) and with low-
frequency words (Popov & Reder, 2020). According
to the SAC model, the primacy effect occurs because the
amount of available resources decreases as cognitive
operations move forward. In a free recall task, participants
have their full pool of cognitive resources at the beginning
of a list. Encoding the first word depletes a portion of the
resource pool. Since resources recover only gradually over
time, participants will have a partially depleted resource
pool when they start to encode the second word and
such depletion accumulates as the list moves forward.
Eventually, the proportion of resources depleted by each
word and the amount recovered between words balance
each other, leading to an asymptote of available resources,
mirroring the behavioral asymptote. We anticipate such
accumulation of depletion will be reflected by the changes
in the neural index of resource availability, that is, the
neural index decreases as the list continuously moves
forward until it reaches the asymptote.

2. Sequential effect of word frequency—According to the
SAC model, based on prior work (Diana & Reder, 2005;
Reder et al., 2007), the encoding of low-frequency words

requires more resources than the encoding of high-frequency
words, leaving fewer resources to process subsequent
information and therefore impairing memory performance
(for a review, see Popov & Reder, in press). Because the
encoding of low-frequency words depletes more resources
relative to high-frequency words, the model predicts a
sequential effect of word frequency in episodic memory—
namely that memory performance for one word in a study
list should be higher when it follows high-frequency rather
than low-frequency words. In support of this prediction,
Popov and Reder (2020) discovered that the word frequency
of a specific word, X;, where & represents the word’s position
on a study list, affected memory for the items that followed it
on the study list, that is, items X ; 1, X . 2, etc. Specifically,
memory performance was better across a variety of test types
(item and associative recognition, cued and free recall) for
item X; , ; when the preceding X} item was a high-frequency
word rather than a low-frequency word. If the identified
neural index in fact represents resource availability, it should
measure a lower amount of cognitive resources during
encoding X; . ; after encoding a low-frequency word
X compared to a high-frequency word X;. Moreover, the
SAC model can also capture a stronger effect of word
frequency on the memory of the immediate subsequent
item X , ; compared with the next subsequent item X; , »
since the resources have less time to recover by the time
an item is presented for X; . ; than X; , , (Popov &
Reder, 2020). Therefore, a valid neural index of resource
availability should index a larger difference at X, ,
compared with X, , , between the resource availability
following the encoding of a low-frequency word and
the resource availability following the encoding of a
high-frequency word at position k.

Once we have a validated neural index of resource availability,
we can use it to propose novel hypotheses regarding other
LTM phenomena that might be influenced by available cognitive
resources during encoding. For example, successfully recalled
items are associated with different neural patterns during encoding
compared with those of unrecalled items. These differences are
known as subsequent memory effects (SMEs), and they consistently
appear across various brain regions, memory tasks, and imaging
technologies (Kim, 2011; Paller et al., 1988; Paller & Wagner,
2002). Though SMEs have been long established and robust, the
interpretation of SMEs remains unclear (Halpern et al., 2021; Long
et al., 2014; Paller & Wagner, 2002).

What are the underlying neural mechanisms during encoding that
contribute to better recall performance? Multiple accounts have
been provided in the past, linking SMEs to either endogenous
factors such as attention and fatigue (Aly & Turk-Browne, 2016;
Lohnas et al., 2020; Uncapher & Rugg, 2009) or external factors
reflecting stimulus and task-related variables (Bainbridge et al.,
2017; Craik & Lockhart, 1972; Fellner et al., 2013; Hanslmayr et al.,
2009; Hanslmayr & Staudigl, 2014; Otten & Rugg, 2001a, 2001b;
Sanquist et al., 1980). More recent efforts aim to further disentangle
endogenous factors with external factors (Halpern et al., 2021;
Kahana et al., 2018; Weidemann & Kahana, 2021).

In the current work, we show that the amount of available resources
during encoding provides an alternative account for SMEs. Consistent
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with the SAC’s resource-depletion-and-recovery assumption, more
available resources should relate to a more efficient encoding process
and thus a better memory for an item. If the amount of available
resources during encoding contributes to the observation of SMEs,
we should observe a higher resource availability index for sub-
sequently recalled items compared with subsequently unrecalled
items. Moreover, according to the SAC’s resource-depletion-and-
recovery assumption, as the resources recover gradually, the amount
of resources available on one trial is correlated with the amount of
resources at the preceding trial. Thus, we make a novel prediction
about a potential sequential effect associated with the SME, which
we termed as the “sequential subsequent memory effect”: If we split
the subsequently recalled and subsequently unrecalled words and
examine the neural activity when encoding the preceding item
(in contrast to neural activity when encoding the given word as
analyzed in standard ‘“subsequent memory effect”), the resource
availability index should be higher at encoding the preceding word
among words that are subsequently recalled than words that are
subsequently unrecalled. In other words, if the amount of resources
available is high prior to the start of encoding an item, it is more likely
that this item is subsequently recalled.

In the remaining article, we provide the background of the SAC
model from which we infer the amount of available resources during
encoding and describe the procedure to obtain the neural index
of resource availability from the EEG data. Then, we validate
the neural index of resource availability by comparing it against
the inferred resources from the SAC model. Finally, we use the
validated neural index as a tool to test a novel hypothesis that the
SME is associated with the amount of available resources during
encoding. Overall, these results provide converging support for the
SAC’s resource assumption and a future tool for directly monitoring
the amount of available resources from neural data.

Method
Participants

We analyzed the data from Experiment 4 of the Penn
Electrophysiology of Encoding and Retrieval Study (PEERS;
Kahana et al., 2022). PEERS comprises four experiments, and the
data sets have been used in many other previous studies (Healey
et al., 2019; Healey & Kahana, 2016; Lohnas et al., 2015). We
excluded the participants for whom we could not find corresponding
behavioral data, and the final sample included 88 participants
(aged between 18 and 35) each with at least 20 completed sessions.
The analyses in this study were not preregistered. We obtained
preprocessed EEG data from Weidemann and Kahana (2021) and
behavioral data from the lab that conducted the PEERS (Kahana
et al., 2022; https://memory.psych.upenn.edu). We are grateful to
the Kahana lab and to C. Weidemann for making their data available
for reanalysis. The analysis code can be found at https://rutgers.box.
com/s/mfx50eea92e6giphgwck8405127p3vxu.

Delayed Free Recall Experiment

Participants performed a delayed free recall experiment with
several experimental sessions consisting of 24 lists of 24 words. For
each list, participants were asked to consecutively remember the
word presented on the screen after which they performed a distractor

task followed by a free recall task where they had 75 s to recall
the just-presented items in any order after 1,200-1,400 ms. At the
beginning of each list, there was a 1,500-ms delay before showing
the first word. The presentation time for each word was 1,600 ms,
and the interstimulus interval between words randomly jittered
between 800 and 1,200 ms (uniform distribution). The distractor
task lasted 24 s during which participants solved math problems in
the form of A + B + C = ? where A, B, and C are integers ranging
from 1 to 9, and participants were given bonuses based on their
speed and accuracy. Half of the lists were randomly chosen in each
session (excluding the first list) where a prelist distractor task was
added. In the prelist distractor task, participants performed the same
math problem described above for 24 s before the presentation of the
first word with an interval jittered between 800 and 1,200 ms.

The experiment used a subset of 576 words drawn from an
original word pool used in other PEERS experiments. For every
participant, each session used these same 576 words but randomly
assigned them to 24 lists. We obtained the word frequency of each
word from the pregenerated word frequency data set from Semenov
et al. (2015).

EEG Data Collection and Processing

Two systems, a 128-channel Biosemi Active and a 129-channel
Geodesic Sensor (Electrical Geodesics, Inc.), were used in the
experiment to record EEG data. Each participant used the same
system for all their experimental sessions. The MNE package
(Gramfort et al., 2013) and custom python codes were used to
execute the raw EEG data. A 0.1-Hz high-pass filter was applied to
both systems, and the EEG data were then re-referenced based on the
average reference. The epoch of interest started from 800 ms
before each word shown on the screen to the end of its presence. A
1,200-ms buffer zone was applied to both sides of the epoch during
wavelet transform after which a power spectrum analysis was
conducted based on the logarithmically spaced 15 frequencies
ranging from 2 to 200 Hz. A log-transform was applied to the power,
and the time was down-sampled to 50 Hz. At each electrode and
frequency, z-transformed powers were calculated across all trials
within each session for each participant. As the goal of the study is to
identify a single neural index of resources, and we do not have a
strong hypothesis about which frequency bands at which electrodes
are important, we averaged activity across electrodes in the superior
region for our analysis. These electrodes were used in previous
studies (Paller et al., 1988; Weidemann et al., 2009; Weidemann &
Kahana, 2021). For Electrical Geodesics, Inc. system, the powers at
electrodes 4, 5, 12, 13, 19, 20, 24, 28, 29, 37, 42, 52, 53, 54, 60, 61,
78, 79, 85, 86, 87, 92, 93, 111, 112, 117, 118, and 124 were
aggregated together, and for Biosemi system, electrodes AS, A6,
A7, A18, A31, A32, B2, B3, B4, B18, B19, B31, B32, C2, C3, C4,
Cl11, C12, C24, C25, D2, D3, D4, D12, D13, D16, D17, and D28
were aggregated together for subsequent analysis.

Neural Index of Resource Availability

The power spectrum patterns were averaged over a time interval
of 0-1,600 ms after each word presented. We defined this averaged
power spectrum pattern as the key neural signature to derive the
amount of available cognitive resources. According to the SAC
model, participants have their full amount of available resources at the
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beginning of each list. Therefore, we used the power spectrum pattern
at encoding the first word in lists as a template pattern for maximum
resources. We reasoned that the more a power spectrum pattern is
similar to the template pattern, the more resources are available. Since
the power spectrum pattern is a vector of power values across
frequencies, we calculated Pearson correlations between the template
pattern and other power spectrum patterns as the measurement of the
similarity. The Pearson correlation coefficient was then used as the
resource availability index indicating how much cognitive resources
are available. A larger divergence of a neural power spectrum pattern
from the template corresponds to a lower index, indicating fewer
cognitive resources available at that moment. The neural index varies
between —1 and 1 with —1 indicating least resources and 1 indicating
max resources. We compared the index in phenomena of interest
across participants using mixed linear regressions and paired ¢ tests.

In every session of the experiment, half of the lists had a prelist
distractor task. We excluded those lists when calculating the neural
template of maximum resources for the following reasons: First,
completing the distractor task could cause additional depletion of
cognitive resources prior to starting to learn a list; second, using lists
without a preceding distractor task is a more typical free recall
paradigm, and we hope this neural index can be applied as a tool for
characterizing resources in more general cases. Because completing
the distractor task could cause additional depletion of cognitive
resources for early serial positions—we excluded the lists with
a prelist distractor task when comparing the neural pattern with
respect to serial positions. Such distractor task does not influence the
comparison of cognitive resources regarding word frequency and
SMEs; therefore, in those cases, neural signatures were calculated
across all lists to maximize statistical power.

SAC Model of Resource Availability

In the current work, we apply the SAC model of episodic memory
to infer the amount of available resources during encoding, based on
behavioral data during recall. The inferred resource availability will
then be used to validate the neural index of resource availability,
obtained from the neural signal during encoding. The current work
does not represent a novel theoretical model development of SAC
per se—instead, it applies SAC to validate the resource-depletion-
and-recovery assumption with neural data. That said, although it
was not part of the original motivation behind this project, we were
able to derive an analytic solution to SAC’s likelihood function,
which has significant benefits for future model development.

We employed a simplified version of the SAC model (Popov &
Reder, 2020) described below, which keeps the major assumptions
about how the resources deplete and recover. The original SAC
model is more complicated and involves assumptions about memory
decay, contextual fan, and others; however, these assumptions are not
relevant for the current work. Thus, we decided to simplify the model
in order to clearly demonstrate the resource-depletion-and-recovery
assumption. This should allow for other computational models of
memory to capture the same set of behavioral findings as long as the
below assumptions of resources are incorporated into their models.

The model assumes that encoding information in LTM depletes a
proportion of a limited resource pool (Wp.x = 1) and that the
strength of the LTM trace is proportional to the amount of resources
dedicated to it. In the model, information is represented as a network
of nodes that vary in strength between O and 1. Words have

preexisting semantic nodes whose strength B, is a continuous
function of word frequency f measured per million words (fixed
parameter values used by Popov & Reder, 2020):

By = 0.4 — 0.2¢701, (1)

Based on this equation, we estimated that in the current
experiment, the strength of low-frequency words was 0.22 and
the strength of high-frequency words was 0.40 (note that word
frequency varied continuously, and the strength was also estimated
continuously). When encoding a word in a studied list, two
processes occur. First, the activation of the semantic node is raised to
1, which depletes the following amount of resources:

Wsem,i = T(l - Bsem,i)zwiv (2)

where T is a scaling parameter and W; is the amount of currently
available resources at the begining of trial i. Thus, high-frequency
words having higher base-level strength require less of the resource
to be activated, (1 — 0.40)*t = 0.360r, relative to low-frequency
words, (1 — 0.22)* = 0.608. After the word is encoded, an episodic
node is created which represents the binding between the word
and the list context. Creating an episode node depletes a proportion
8 of the remaining available resources, and its strength, Bep, is
proportional to the amount of resources it consumed:

Wepi,i = S(Wl - Wsem,i)’ (3)

Bepi,i =/ Wepi,i~ 4)

The resource pool recovers linearly over time #; between item
presentations at a rate of r per second until it reaches W,y:
Wi+1 = min(wmam Wi - Wsem,i - Wepi,i + rti)' (5)
To transform memory strength, B, into recall probabilities, the
model uses a standard signal detection rule. The model posits that
successful recall of item i occurs probabilistically if the episode
node’s strength is above the retrieval threshold:

Bc i ec i
p =[P~ 0
csepi

where p; is the probability of succesful recall, O.p; is the retrieval
threshold, o.; is the standard deviation of normally distributed noise
added to the episodic node’s strength, and @ is the cumulative
distribution function of a standard normal distribution.

Finally, since individual recall attempts are coded as either
successful (1) or unsuccessful (0), the likelihood of the response
follows a Bernoulli distribution:

fory,; =1

fory;=0" )

L0l ~Bemoutip) = { I
.

Model Fitting and Simulation Procedure

We first fitted the model to grouped behavioral recall data over
serial position and word frequency of the preceding word (five model
parameters—r, 8, , Ocpi, and o¢p;). We only included Serial Positions
1-15 to estimate the model, because Serial Positions 16-24 showed
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recency effects. The reasons to exclude recency effects are twofold.
First, recency effects are not of interest in the present study, and
including them or not does not affect how we compare resources
obtained from the neural data versus SAC. Second, while it is
possible to include a recency mechanism in SAC (Popov & Reder,
2020), using a simplified SAC without a recency mechanism
critically allows us to derive the likelihood-based model that can be
fit to individual subjects efficiently. We describe more details about
individual model fitting in this section later. When fitting the model
to behavioral patterns averaged across participants, five parameters
were estimated via a grid search (t = 0.2, 5 = 0.26, r = 0.08, 0,,; =
0.367, 6., = 0.256) minimizing the root-mean-square error of the
observed and predicted free recall probability. The obtained model
gives us estimates of cognitive resources during the encoding of each
word through W; as found in Equation (6).

In addition to group-level model fitting, for each participant,
we used maximum likelihood method to allow for efficient model
parameter estimation at the trial level to obtain individual participant
parameters. The full model likelihood function is derived in
Appendix E. We used each individual model with the corresponding
individual parameters to calculate the availability of cognitive
resources at encoding the words with increasing serial positions.
In the Results section, we report the group-level simulation on
how resources change with the serial position and preceding word
frequency. We also detail the results of individual-level simulation
regarding serial positions in Appendix D and summarize it in the
Results section.

The model so far only captures exogenous factors that affect
resource depletion such as serial position and word frequency. To
capture the effect of endogenous factors, in the Results section, we
also report group-level simulations when there’s additional noise
added to the resource depletion proportion on each trial (using the
same set of model parameters previously fit to the group data).
Specifically, we introduced normally distributed noise in the &
parameter on each trial j: 8; ~ N (8, 0.1), and an item is recalled if its
episodic node’s strength is above the retrieval threshold Ocp;.

Results

Although the resource-depletion-and-recovery assumption of the
SAC model has been supported by a series of behavioral findings
(Kowialiewski et al., 2021; Mizrak & Oberauer, 2021; Popov et al.,
2019, 2021; Popov & Reder, 2020), its neural underpinnings are
yet to be found. We extracted a neural signature from EEG data
and defined a corresponding neural index indicating the resource
availability. To validate this resource availability index, we compared
it with the resource availability inferred from the SAC model that
captured the primacy serial position effect and the sequential effect of
word frequency.

Validation of Resource Availability Index

First, we fitted the SAC model to the averaged recall data so as to
see whether this simplified version based solely on the resource-
depletion-and-recovery assumption could capture the behavioral
pattern during recall. The model provided good fits to the primacy
portion of the free recall data (Figure 1; root-mean-square error =
0.006, R* = 0.989), with its estimated parameters consistent with
previous SAC models (Popov & Reder, 2020). Specifically, as

Figure 1

Primacy Serial Position Effect (Recall Probability Is at Its Highest
at the Beginning of the List) and Sequential Effect of Word
Frequency (Recall Probability Is Higher When Preceded by High-
Frequency Words Than Low-Frequency Words), as Captured by the
SAC Model

0.65

Observed: preceded by HF

—— Observed: preceded by LF
e *- Model: preceded by HF
--+- Model: preceded by LF

o
o
o

Free recall probability
o o
w w
o w

0.45

>4 9-0-0-0-o-0-0-0

2 5 8 11 14 17 20 24
Serial position

Note. ©=0.2,8=0.26, r =0.08, O.p; = 0.367, 6p; = 0.256. Note that the
model was only fit to Serial Positions 1-15 but we show the full curve for
completeness and transparency. HF = high-frequency; LF = low-frequency;
SAC = Source of Activation Confusion. See the online article for the color
version of this figure.

shown in Figure 1, the model, presented in the dash line, successfully
captures the primacy serial position effect where the recall probability
is the highest for the first presented word and decreases gradually
with the serial position regardless of the word frequency of the
preceding words. Meanwhile, at each serial position, the model
captures the sequential effect of word frequency where the recall
probability is higher when the word was preceded by a high-
frequency word rather than a low-frequency word. As demonstrated
in Appendix A, the model is also able to capture individual
participant differences in the magnitude and duration of the primacy
effect, as well as the word frequency sequential effect when treated
as a continuous rather than a binned binary variable.

With the SAC model fitted to the recall period of the behavioral
data, we can infer the amount of available resources during encoding
according to the SAC model and compared it with the neural index
of resource availability (calculated separately from the encoding
period of the neural data). Figure 2a shows the amount of available
resources at the beginning of encoding each serial position in SAC.
At the beginning of the list, resources are at their maximum, and they
decrease gradually with each serial position, until they asymptote
approximately after Item 15. If the neural index indeed reflects the
amount of available resources, it should follow the same pattern.

Figure 2b shows the power spectrum pattern of neural patterns
when encoding words at different serial positions (among lists
without a prelist distractor task). We assumed that the available
cognitive resources are at their fullest at the beginning of each list
and proposed the power spectrum pattern of encoding the first word
in the list as a template pattern for maximum resources (Figure 2b).
We then measured the neural index of resource availability as how
much the encoding patterns of other words are similar to this
template pattern (Figure 2c).
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Figure 2
The Effect of Serial Position on Available Cognitive Resources During Encoding
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Note. (a) Available resources in the SAC model for different serial positions partitioned by whether words were subsequently recalled. (b) The power
spectrum pattern when encoding words from Serial Positions 1-6 (in lists without a prelist distractor task). (c) Neural index of resource availability for different
serial positions (in lists without a prelist distractor task), partitioned by whether words were subsequently recalled. Note that: (1) figure “a” represents resources

inferred from the SAC model fitted to the recall data while figures “b” and “c”

were measured from EEG data during the encoding period in the free recall task;

(2) resources in the SAC model vary between 0 and 1, while the neural resource availability index varies between —1 and 1. These two notes also apply to the

corresponding subfigures in Figures 4, 5, and 6. SAC = Source of Activatio
version of this figure.

The template, that is, Serial Position 1, has the lowest power value
at the middle-frequency band and the highest value at the low- and
high-frequency bands. As the serial position increases, generally,
the value at the middle-frequency band becomes larger and the value
at the low- and high-frequency bands becomes lower (Figure 2b).
In other words, the neural signature diverges more from the template
as the serial position increases, giving rise to decreased amount of
resource availability as measured by our proposed neural index in
Figure 2c. Since recall performance highly correlates with serial
positions, we plotted the pattern for recalled and unrecalled words
separately. This pattern holds for both recalled and unrecalled
words, demonstrating that the trend is not a trivial consequence of
having higher accuracy at earlier serial positions. We fitted a linear
mixed model to test the effect of serial positions on neural indices.
The effect of serial position is significant and negative in both
recalled, p = —0.06, 95% CI [-0.06, —0.05], #(2108) = —40.06,
p <.001; Std. p = —0.62, 95% CI [-0.65, —0.59], and unrecalled
conditions, p = —0.06, 95% CI [-0.06, —0.05], #(2108) = —38.83,
p < .001; Std. p = —0.59, 95% CI [-0.62, —0.56]. As the serial
position number increases, the continuously decreasing index
indicates fewer and fewer available cognitive resources during
encoding, which matches the pattern of resource availability inferred
from the SAC model in Figure 2a.

Concerning the primacy effect, we note that SAC predicts an
earlier convergence to its asymptote compared to the pattern
demonstrated by neural data. This mismatch is possibly due to the
simplified model setting which only focused on the resource-
depletion-and-recovery mechanism. The model did not build any
association between words, treated lists as independent instead of
consecutive, or excluded processes during retrieval. All of these
processes could potentially also deplete resources or bias the model
parameter estimates (e.g., overestimate depletion rate). Per-

n Confusion; EEG = electroencephalogram. See the online article for the color

participant level simulation also provides evidence that differences
in the shape/steepness of the neural resource index can be explained
by variations in resource parameters over participants. Despite the
early convergence, one might expect any natural drifting of neural
signals leading to this decreasing function; however, this is not
necessarily the case since neural drifting is not always monotonic
across frequencies (see counterexamples in Appendix A).

If the model correctly captures the amount of available resources,
fitting the model to individual participants should give us individual
resource availability parameters that correlate with the magnitude of
the neural resource index at the individual level. This would provide
stronger evidence for the resource interpretation of the neural index.
This is indeed what we found. For each participant, we calculated
the average neural index collapsed over all trials, and we fit a linear
regression model using the four model parameters as predictors
(note that the T parameter was fixed across participants and that we
had to exclude 32 participants because we could not uniquely
identify a single set of parameters for them; see Appendix D for
more details). The regression model showed that the resource
parameters of the model explain 20% of the variance in the overall
neural index at the level of individual participants (see more details
in Appendix D). Participants with larger  parameter (i.e., the
proportion of resources depleted by each item) have overall lower
neural resource indices, shown by the negative correlation, r(55) =
—0.758, p < .001, after controlling for the effect of other parameters
(Figure 3a). In Figure 3b, we split participants into three groups
based on their & value and show their serial position curve
separately. Likewise, groups with higher & has lower neural indices
at all serial positions. The effect of the recovery rate parameter is
consistent with model prediction as well. After controlling for the
effect of other parameters, we find a positive correlation between
recovery rate and overall neural resource indices, r(55) = 0.75,
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Figure 3

The Effect of & (the Proportion of Resources Depleted by Each Item) and r (Recovery Rate) on
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(a) Negative correlation between & and overall neural index across participants. (b) Participants were

evenly split into three groups based on their 8 parameters. Group with higher & relates to an overall lower neural
index. (c) Positive correlation between r and overall neural index across participants. (d) Participants were evenly
split into three groups based on their r parameters. Group with higher recovery rate relates to an overall higher
neural index. See the online article for the color version of this figure.

p < .001 (Figure 3c). After being split into three groups based on
recovery rate r, participants with higher recovery rates have higher
neural indices at all serial positions (Figure 3d). These per-participant
level results significantly strengthen the support of the resource-
based account.

After comparing available resources regarding serial positions,
we next plot the amount of SAC inferred resources regarding the
frequency of the preceding word. Figure 4a shows the effect of word
frequency at position k on the resource availability while encoding
the immediately subsequent item (position k + 1) or the item after
that (position k + 2). Specifically, studying low-frequency words at
position k leaves fewer resources available when the next words are
presented, and this effect is more pronounced during the encoding of
words at position k + 1 (Whigh-frequency = 0-60, Wigw-frequency = 0.57)
than during the encoding of words at position k + 2 (Whigh-frequency =
0.58, Wiow-frequency = 0.56), as the latter has more time to recover the

pool of cognitive resources. If the neural index we identified
represents resource availability as we hypothesized, then it should
show similar patterns as a function of word frequency as the SAC
model’s inferred resources based on recall performance (Figure 4a).

Figure 4b and 4c show the power spectrum patterns when
encoding words at position k + 1 and k + 2. We split trials into five
bins with equal number of words in each based on their word
frequency at position k (k range from 1 to 22) and compared the
corresponding neural signatures in bins of the highest and lowest
word frequency. In both Figure 4b and 4c, neural patterns related to
high-frequency words at position k are more similar to the template
representing maximum resources (see Figure 2b). Because the neural
index of resource availability is defined as the similarity to the
template, this means that there are more resources available when word
encoding is preceded by a high-frequency word (Figure 4d). To
formally test whether higher neural index is related to encoding words



8 MA, POPOV, AND ZHANG

Figure 4
The Effect of Word Frequency of the Preceding Word on Available Cognitive Resources During Encoding
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Note. (a) Available resources in the SAC model during encoding words at positions k + 1 and k + 2 depending on the frequency of the word at position k.
(b) The power spectrum pattern when encoding words at position k + 1 depending on the frequency of the word at position k. (c) The power spectrum pattern
when encoding words at position k + 2 depending on the frequency of the word at position k. (d) Neural index of resource availability during encoding words
at positions k + 1 and k + 2 depending on the frequency of the word at position k. SAC = Source of Activation Confusion. See the online article for the color

version of this figure.
Asterisks indicate a significant difference between groups (** p < .01).

following high-frequency rather than low-frequency words and
whether this effect is more pronounced at position k£ + 1 than & + 2, we
performed a two-way repeated analysis of variance on the neural
index. The result shows a significant effect of interaction between
word frequencies and serial positions, F(87) = 3.97, p < .05. In
comparison to encoding low-frequency words (M = —0.60, SE =
0.04), encoding high-frequency words (M = —0.43, SE = 0.05) at
position k is associated with a significant higher resource index value,
#87) =2.81, p =.006, d = 0.42, at position k + 1. Encoding words of
different word frequencies does not have a significant effect on the
neural index at the k + 2 position. Altogether, high-frequency words at
position & are related to more available cognitive resources at position
k + 1 and a smaller, even though nonsignificant, facilitation at
position k 4+ 2, which matches the pattern of resource availability
inferred from the SAC model in Figure 4a. Comparison between the
low-frequency bin and the high-frequency bin was chosen because of
the ease of visual demonstration. In the previous analysis, we split
word frequency into bins, because it makes it easier to visualize the
trend. However, word frequency is a continuous variable, and in
principle, the model takes into account each specific item’s frequency,
rather than its bin. In Appendix B, we applied mixed linear models
and confirmed the significant effect of word frequency in the analysis
of both finer frequency bins and specific word frequencies.

Both the evidence from the primacy serial position effect and
the sequential effect of word frequency validated that our proposed
neural index of resource availability reflects cognitive resource
availability. This conclusion is further supported by the correlation
between resource parameters for individual participants and the
magnitude of their individual neural index. Following the validation,
we are interested in whether the neural index can serve as a tool to
examine LTM phenomena that might be influenced by available
cognitive resources during encoding.

An Alternative Account for SMEs

SME:s refer to the observation that neural patterns of encoding
subsequently recalled items are different with those of encoding
subsequently unrecalled items. Multiple accounts have been proposed
in the literature, associating SMEs with attention, fatigue, and
properties of stimuli (Aly & Turk-Browne, 2016; Craik & Lockhart,
1972; Halpern et al., 2021; Hanslmayr & Staudigl, 2014; Lohnas et al.,
2020; Otten & Rugg, 2001b; Uncapher & Rugg, 2009; Weidemann &
Kahana, 2021). We propose that observed SMEs are associated with
different amounts of available cognitive resources during encoding.

We first reproduced in Figure 5a the SMEs commonly observed
in the literature, where the neural patterns for subsequently recalled
words are different than those for subsequently unrecalled words.
Consistent with prior studies (Gruber et al., 2004; Hanslmayr et al.,
2012; Sederberg et al., 2003, 2006; Summerfield & Mangels, 2006),
Figure 5a demonstrates that the power spectrum pattern associated
with subsequently recalled words has a lower value at the middle-
frequency band and higher values at the low-frequency and high-
frequency bands. Unique to our current analysis, however, is our
ability to interpret these patterns as how similar they are to the template
that represents maximum resources, that is, there is a smaller divergence
from the first encoded word template among the recalled words
compared to unrecalled words, indicating that there are more resources
available when encoding words that are subsequently recalled.

This effect is more clearly seen in Figure 5b, where there is a
significant higher neural index of resource availability, #(87) =9.93,
p < .001, d = 2.07, at encoding subsequently recalled words (M =
0.76, SE = 0.09) than subsequently unrecalled words (M = —0.86,
SE = 0.08). One may wonder if this observation provides any
additional unique evidence to support the resource account for
the neural index, since we have already shown that earlier serial



A NEURAL INDEX OF RESOURCE AVAILABILITY 9

Figure 5
Explaining Subsequent Memory Effects by Cognitive Resources Available During Encoding
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The neural index of resource availability of subsequently recalled versus unrecalled words. (c) Available resources in the SAC model during the
encoding of subsequently recalled versus unrecalled words. SAC = Source of Activation Confusion. See the online article for the color version of

this figure.

positions in the list are associated with higher neural index and that
recalled words are more likely to come from earlier serial positions.
This is already clear from Figure 2c¢, which dissociates serial
position from recall status; to statistically validate the claim that
recalled words are associated with higher neural index than unrecalled
words, even after controlling for serial positions, we ran a mixed linear
model with random intercept and slope to control the effect of serial
position. The effect of the recall (recalled word was encoded as 1,
otherwise 0) is statistically significant and positive, § = 0.08, 95% CI
[0.06, 0.11], #(4217) = 6.71, p < .001; Std. f = 0.06, 95% CI [0.05,
0.08]. Again, the result indicates that compared to unrecalled words,
recalled words are associated with higher neural index.

This result supports our hypothesis that the differential neural
patterns at encoding for subsequently recalled versus unrecalled
words could be a result of participants having different cognitive
resources available during encoding. We also simulated available
resources during encoding of subsequently recalled or subsequently
unrecalled words according to the same SAC model we fitted before
(Figure 5c¢). Figure 5c shows that the available resources in SAC
are higher during encoding subsequently recalled words compared
to subsequently unrecalled words (Wecarea = 0.67, Wanrecalled =
0.55), consistent with the neural index pattern.

To further support our hypothesis that the SMEs could be a result of
participants having different cognitive resources available during
encoding, we made a novel prediction of a phenomenon that is closely
related to the SMEs, which we call the “sequential subsequent memory
effects”—subsequent better memory for item X, , | is associated with
different neural patterns when encoding X (instead of X; , ; as in
standard SMEs; k and k£ + 1 are the positions of the item). This is
shown in Figure 6a where the power spectrum pattern for encoding
words at position k is different for subsequent recalled versus
unrecalled items encoded at position k£ + 1; this holds either when
items encoded at position k were subsequently recalled (Figure 6a) or
unrecalled (Figure 6b). Importantly, we predict that better memory
for item X, , ; is associated with more resources during the
encoding of the preceding item X,, as the available resources

during encoding words at position k only change gradually and
could carry over to position k + 1.

We tested this prediction by plotting the neural index of resource
availability during encoding of X, given whether X; , | were
subsequently recalled or not (Figure 6¢). When the word X, was
recalled, more resources are related to successful recall of the word
X + 1 (M =0.568, SE = 0.049), with a significantly higher index
value, #(87) = 6.367, p < .001, d = 0.774, in comparison to where the
word X}, , ; was not recalled (M = 0.192, SE = 0.055). When the
word X, was unrecalled, the resource availability indices are not
significantly different from each other (Figure 6¢)—possibly due to
an already nearly fully depleted resources indicated by the preceding
state where participants had already failed to recall. Altogether,
these neural results show that more cognitive resources available at
encoding preceding words relate to better memory of current words,
indicating that the amount of resources available at any point is
associated with not only the memory of the item encoded at that
point but also the memory of items encoded in the near future.
Even when there are enough resources at time k to encode item
X successfully, having even more available resources would leave
enough for encoding the subsequent item X; ;.

To test whether the SAC model also produces these sequential
SME:s, we simulated how the resources change in such condition
according to the already fitted SAC model (Figure 6d). The
simulation result has a close correspondence with the neural index
(Figure 6a). Specifically, more resources are available during
encoding X; when X; , | was recalled rather than unrecalled and
such effect is larger when X} is recalled (Wyecatiea = 0.76, Wanrecatled =
0.62) compared to when X, is unrecalled (Wyecatiea = 0.60, Wynrecatted =
0.52). The resource availability inferred from the SAC model
(Figure 6d) corresponds to that measured by our neural index during
encoding (Figure 6c), although the model does predict a small
difference even when item X} is unrecalled.

While the sequential SMEs are consistent with the SAC model,
there are two possible confounding factors: serial position and
contiguity effect. If item X and X, , | were both recalled, they are
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Figure 6
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Explaining Sequential Subsequent Memory Effect by Cognitive Resources Available During Encoding
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more likely to be words presented earlier than later. Since earlier
serial positions are related to higher neural index values compared to
later serial positions, the higher index value shown in the sequential
SME may be solely due to serial positions at which words were
presented. To control the effect of serial position, we ran a mixed
linear model with random intercept and slope. The dependent
variable is the neural index at item X,. The predictors are whether
item X was recalled, whether item X, ; was recalled, and the serial
position. The result shows a positive significant effect of whether
k + 1 was recalled, f = 0.02, 95% CI [1.99e—-03, 0.04], #8088) =
2.17, p = .030; Std. B = 0.02, 95% CI [1.57e—03, 0.03], indicating
that the sequential SME is not solely due to the serial position.
The second factor is the contiguity effect during recall. The
contiguity effect indicates that when an item X; is retrieved during
the recall phase, then the next retrieved item is likely to be X; , 4
(Kahana, 1996). Thus, the existing difference which is based on
the comparison between item X; and X; , ; might be caused by
something related to retrieval not resources during encoding. We
conducted additional analysis while controlling for the contiguity
effect (see Appendix C), which did not change our conclusions.
Overall, the novel “sequential subsequent memory effects” that
we observed and their corresponding neural index of resource
availability serve as further evidence that the amount of available
cognitive resources provides an alternative account for the SMEs.

General Discussion

Humans possess a limited amount of cognitive resources to
process various cognitive operations (Cary & Reder, 2003; Diana &
Reder, 2005; Popov & Reder, 2020; Reder et al., 2000, 2007);
however, the neural substrate of the resources is not known. In
the present study, we identified a neural index during word encoding

in a free recall paradigm which can be interpreted as reflecting the
amount of cognitive resources available for forming new memory
traces. We validated this neural index of resource availability
(measured from the neural data during encoding period) by
demonstrating its alignment with inferred resources from the
SAC model (obtained from the behavioral data during the recall
period): Resource availability in both SAC and neural index
decreases with serial positions and is higher following encoding a
high-frequency word than a low-frequency word. Finally, by fitting
the model to individual participants, we found that participants
with higher resource-depletion rates or slower resource-recovery
rates, as estimated by the model, also had a lower neural index.
Combined, these effects provide substantial support for our resource
availability interpretation of the neural index identified in the
current article.

The advantages of separately obtaining the neural resource
availability and the model-based resource availability before
evaluating their alignment are twofold. First, it is challenging to
directly interpret what changes in the neural index represent;
alignment between the neural index and the well-specified
property of cognitive resource in SAC allows us to interpret the
obtained neural index as the amount of available resources. This
alignment further allows us to explain the long-established SMEs
in terms of the amount of cognitive resources available during
encoding, as we observed higher neural index for subsequently
recalled items compared with that for subsequently unrecalled
items. Second, the discovery of a neural index that aligns with how
cognitive resources change in SAC provides converging support
to the proposed limited resources in the SAC model, especially
as the neural index of resource availability and SAC’s resource
availability were derived from separate portions of data. We now
turn to the broader implications of these results.
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Distinguishing From Alternative Interpretations of the
Neural Index

One important feature that distinguishes the SAC’s resource
explanation from other constructs like attention is its well-specified
mathematical property, rather than a vague appeal that “more
attention is devoted to items that are subsequently recalled.” This is a
nontrivial difference—the precise specification of resources allows
us to test a variety of phenomena and derive numerical predictions as
we have already shown. For these predictions, the SAC’s resource
assumption successfully explained all but other constructs could
only account for a subset.

For example, one may wonder if the identified neural index reflects
the rhythmic waxing and waning of attention. However, rhythmic
changes in attention predict that there should be autocorrelation in
attention from trial to trial, but not that attention should always
decrease over time and be reinstated at the beginning of the list. One
could of course impose a monotonic decrease function of attention, as
in the Context Retrieval and Maintenance model (Polyn et al., 2009),
but there is no principled reason behind this other than a convenient
mathematical function to account for the primacy effect. In contrast,
the SAC resource depletion mechanisms naturally give rise to this
monotonic function, because each item depletes a fixed proportion
of the remaining available resources, which, together with the
gradual recovery of resources, leads to initial steeper depletion, then
eventually to an asymptote. Thus, the SAC model derives this
monotonic function from a mechanism, instead of just stipulating its
existence. Additionally, there are other issues with the attentional
fluctuations account. Attentional fluctuations cannot explain the
sequential effect of word frequency in the article. Low-frequency
words attract more attention relative to high-frequency words (Diana
& Reder, 2005; Malmberg & Nelson, 2003; Popov & Reder, 2020).
If the neural index represents rhythmic waxing and waning of
attention, then the neural index should be higher on items that follow
low-frequency instead of high-frequency items, because attention is
still in a heightened state. We found exactly the opposite, which
is consistent with the SAC account, because in SAC once more
resources are depleted by the low-frequency words, fewer resources
are available for processing subsequent items.

Another alternative is the context change account, as context
drifts gradually from encoding one item to the next (Howard &
Kahana, 2002). One can interpret the neural index as reflecting the
amount of context change since the beginning of the list. As more
surprising events may lead to greater context change and low-
frequency words are generally more surprising, one might explain
the lower neural index after encoding low-frequency words than
high-frequency words as having a larger context change. However,
the same context change account cannot explain why this effect is
smaller two positions, instead of one position, after encoding a
low/high-frequency word; in contrast, the resource account is
associated with a mechanism where depleted resources can recover
over time, accounting for a smaller effect for words presented two
positions after high-frequency and low-frequency words. Additionally,
the context change account does not explain why the neural index
varies as a function of subsequent memory. We found that words that
are subsequently forgotten have a lower neural index during encoding
relative to words that are subsequently remembered. If the neural
index represents the amount of context change during encoding
relative to the start of the list, the difference between indices during

encoding indicates that subsequently forgotten words relate to a
larger context change. It is possible that some words naturally
induce greater context change, but no evidence says they should
then be worse remembered. If anything, we might expect the
opposite, since encoding items in more distinct contexts should
make them easier to retrieve due to their distinctiveness (Siefke
et al., 2019).

Perhaps most importantly, we believe that the per-participant
simulations of the SAC model and their correlations with
the neural index provide further support for the model (see
Appendix D). For example, participants with faster resource-
recovery rates had higher overall neural resource indices—this
effect cannot be explained by endogenous factors such as
contextual drift or external factors such as serial position. While
alternative explanations might account for certain subsets of the
data, taken together, only the resource-based account accounts for
the entire spectrum of results.

A Model-Based Approach to Identify Neural Substrates

Typical cognitive neuroscience approaches focus on applying
statistical models to determine which aspects of the neural data
are associated with certain behavioral outcomes or experimental
manipulations (Turner et al., 2017). For example, by contrasting
neural patterns during a “2-back” working memory task and a
control task that requires only perceptual and response processes,
one can identify a set of brain regions responsible for working
memory maintenance (see a review at Smith & Jonides, 1998).
Similarly, SMEs have been studied by contrasting neural patterns
during encoding for later recalled items against those of unrecalled
items: Using EEG and intracranial EEG, different brain sites were
shown to be related with the successful memory in gamma and theta
oscillatory activities either controlling the serial position (Sederberg
et al., 2006) or not (Sederberg et al., 2003). Likewise, Sederberg
et al. (2007) found that the same pattern of gamma activity observed
across various brain regions during encoding reappeared later
during retrieval. These studies uncover useful information about the
brain regions and oscillatory activities involved in SMEs; however,
it is challenging to interpret why these regions are involved and
the exact mechanism of that involvement (Palmeri et al., 2017,
Turner et al., 2017). What is more, sometimes it is unclear what
behavior outcomes or experimental manipulations one should contrast
the brain activity with. For example, to apply a similar approach, our
present study could design an experiment with two conditions—
corresponding to “high” and “low” demand of cognitive resources—
and compare neural patterns between the conditions. However,
cognitive resource is a latent cognitive construct that we cannot easily
postulate its connection with behavioral outcomes or experimental
conditions. What could be designated as “high cognitive resources”
and “low cognitive resources” conditions could involve other
cognitive processes that result in a complex relationship between
the factors we are interested in, in the behavioral outcomes to predict
(see analyses that demonstrated such complication; Price et al., 1996;
Zhang et al., 2018).

To tackle this problem, we adopt a model-based approach by
comparing our proposed neural index of cognitive resources with
a latent quantity of cognitive resources in a computational model
of memory, that is, SAC. In contrast to cognitive neuroscience
approaches, models of cognition have the advantage to characterize
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latent cognitive processes in precise mathematical terms. The
amount of available cognitive resources in SAC during encoding
was decided so that the model captures behavioral findings in
free recall that are associated with the recovery and depletion
of cognitive resources. Additionally, while models of cognition
typically rely on comparing their fit to behavioral findings to test
alternative theories (Roberts & Pashler, 2000), being able to identify
the neural substrate of a cognitive process in the model can provide
further support for the theory that specifies the cognitive process
(Anderson et al., 2016; Huber et al., 2008; Jacob & Huber, 2020;
Nunez et al., 2017, 2019; Padoa-Schioppa, 2011; Zhang et al.,
2017). Importantly, instead of finding the neural index as the highest
correlated neural signal with predictions from the SAC, we derived
it independently from the encoding phase of the neural data before
demonstrating its alignment with resources inferred by the SAC
from the recall phase of the behavioral data. Since two different
sources of data (encoding and recall) were used to identify the neural
resource availability index and the model’s latent resource
availability quantity, this approach provides strong convergent
evidence for the model’s resource assumptions (see a recent
discussion of evaluative standards for models of memory proposed
by Popov, 2023).

Reconcile Accounts for SME: Endogenous or
Exogenous Factors

To better understand the neural mechanisms during encoding
that contribute to SMEs, it is helpful to distinguish endogenous
factors that reflect endogenously varying brain states with external
factors reflecting stimulus and task-related variables (Weidemann &
Kahana, 2021). Weidemann and Kahana (2021) identified the effect
of serial position on neural activity, that is, neural activity at early
serial positions is similar to those of subsequently recalled items
and that at later serial positions resembles that of subsequently
unrecalled items. These were taken as evidence that the standard
subsequent memory analysis may be misleading (differences in
neural activity between subsequently recalled and subsequently
unrecalled items might reflect processes controlled by exogenous
factors such as serial positions) and that one needs to analyze SMEs
in a way that isolates exogenous factors from endogenous factors
(Weidemann & Kahana, 2021). In a novel analysis approach of
SMEs, Halpern et al. (2021) also emphasized the importance of
adjusting for exogenous factors such as serial positions and item
effects. However, our current work demonstrates that endogenous
and exogenous factors may not be easily separated. This is because
exogenous factors such as serial positions can directly covary with
an endogenous factor such as fluctuations in the amount of cognitive
resources available: According to the SAC’s resource-depletion-
and-recovery assumption, when resource depletion is faster than
resource recovery, as the list moves forward, there are gradually less
and less cognitive resources available. This also simultaneously
explains why neural activity at early serial positions is more similar
to those of subsequently recalled items than unrecalled items, since
both the early serial position items and the subsequently recalled
items are associated with more resources.

It is important to note that SMEs might represent a family of
effects, rather than a single unified signal, and that multiple processes
might be contributing to observed event-related potential patterns
during the encoding of recalled versus unrecalled items (Van Petten

& Senkfor, 1996). Our findings suggest that at least part of SMEs’
signal can be attributed not to encoding processes per se, but to the
“readiness to encode,” consistent with prior findings that EEG
activity before an item is presented can predict subsequent memory
of that item (Noh et al., 2014). The novel sequential SME we
uncovered based on the SAC’s predictions is particularly interesting
in this regard. We showed that even when item X is successfully
recalled, the neural patterns during its encoding differ depending on
whether the subsequent item, X; . ;, was recalled. If SMEs
represented processes entirely related to the encoding of the current
item, such as its memorability, salience, or the strength of the
resulting memory trace, then there is no reason to expect a difference
based on the recall probability of the subsequent item.

Limitations and Future Work

The SAC’s resource-depletion-and-recovery assumption is
agnostic about the nature of the cognitive resources—in it,
resources are a latent quantity that gets assigned as “fuel” to each
memory operation. In our current work, we demonstrated that this
is more than just an abstract mathematical quantity but that it
corresponds to concrete neural substrates. While the current
results take us one step closer to understanding the neural
underpinnings of cognitive resources, it is important to note that as
of yet they do not unambiguously tell us what the nature of these
resources is. Are these cognitive resources the same resources that
underlie one’s limited capacity during working memory tasks
(Anderson et al., 1996; Ma et al., 2014; Oberauer et al., 2016)?
Are these cognitive resources related to the inner resources drawn
during self-regulation in the influential “ego-depletion” account
(Baumeister et al., 1998; though recently called into question
through multiple meta-analyses from Carter et al., 2015; Hagger et
al., 2016; Randles et al., 2017)? Both are excellent venues for future
research.

Besides exploring the nature of resources, one might also be
interested in a more comprehensive analysis of neural patterns.
In the present study, we used a simplified approach to identify a
neural resource availability index by averaging across electrodes
and time. While this achieved the purpose of identifying a relevant
neural index, analyses such as brain activity localization or using
a more fine-grained temporal resolution could be helpful in
future work.

In addition to providing the first neural support of the SAC’s
resource-depletion-and-recovery assumption, the current results
also provide a potential methodological tool with which to study
resource availability in the future. One drawback of behavioral
studies is that differences in resource availability during encoding
can only be inferred based on differences in subsequent recall
performance. In the past, this has significantly limited the questions
we can ask about resource depletion. For example, for modeling
simplicity, Popov and Reder (2020) assumed that resource depletion
during encoding occurs instantaneously with the word presentation
and that afterward the resources recover linearly over time. As they
noted in the conclusion section, these choices allowed the model to
fit the data but were otherwise arbitrary. With the currently proposed
resource availability index, we could in the future potentially directly
measure the time dynamics of resource depletion and recovery during
encoding.
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Conclusion

While there have been numerous behavioral findings that support
an account of limited resources during memory encoding, neural
underpinnings of the resources are unknown. Our work fills this gap
by identifying a neural index of resource availability extracted from
EEG data. We validated this neural index by showing its consistency
with inferred resource availability from the SAC model that was able
to capture the primacy serial position effect and the sequential effect
of word frequency. Further, we used this neural index as a tool for
monitoring resource availability and showed it was able to provide
an alternative account for the long-established SMEs. Together,
these results provided converging support for the proposed limited
resources in the SAC model and a future tool for directly monitoring
the resource availability from neural data.
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Appendix A

Additional Analysis Considering Alternative Accounts of the Neural Index

As reported in the main text, the neural index continuously
decreases as the serial position increases, eventually reaching an
asymptote. One might argue that the neural signal drifts away from the
original point as time passes by and defining the power spectrum
pattern at encoding the first word in lists as the template pattern seems
to necessarily produce such a decreasing function. If this were the case,
it would significantly undermine the support this curve provides for
the resource model. However, this is not the case since neural drifting
is not always monotonic. For example, the alpha band power values

Figure Al

follow a nonmonotonic function where the power values first decrease
and then increase (Appendix Figure Al). Figure 2 in Sederberg et al.
(2006) similarly demonstrated this fact—not all frequency bands
give a monotonic trend with serial positions. The neural index was
measured as Pearson correlation coefficients between template pattern
and power spectrum pattern at encoding other words. Since the power
value function at different frequency bands does not monotonically
increase or decrease, the template we currently use should not
necessarily produce a continuous decreasing trend in neural index.

The Effect of Serial Position on the Alpha Band Power Value During Encoding

002
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Z Power
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Values first decrease and then increase. See the online article for the color version of this figure.
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Appendix B

Additional Analysis of the Neural Index Using Finer Word Frequency Bins

We performed additional neural index analysis for finer
word frequency bins and also for specific word frequencies
separately. We partitioned words into five and 20 bins with
respect to their word frequency where each bin had the same
number of words. For example, in the five-bin case, the first bin
contained the first 20% of the lowest frequent words. We then
performed random intercept mixed linear models using the neural
index at item X, , | as the dependent variable and word frequency
of X, as the predictor. The results (Appendix Figure B1) showed
a significant positive effect of word frequency in both five bins,
f=0.04, CI[0.01, 0.06], #(436) = 2.81, p = .005; Std. p = 0.12,

Figure B1

95% CI [0.04, 0.20], and 20 bins, p = 5.76e-03, CI [1.96e-03,
9.55e-03], #(1756) = 2.97, p = .003; Std. = 0.07, 95% CI[0.02,
0.11]. Similar to the previous behavioral study (Popov & Reder,
2020), the effect of frequency is smaller in finer frequency bins as
data is more noisy.

We further conducted analysis on word frequency values without
using frequency bins. Before fitted to the mixed linear model, the
word frequency was log-transformed. The result shows that the
effect of frequency is statistically significant and positive, f = 4.67¢
—03,95% CI[2.16e—03, 7.18e—03], #(50684) = 3.64, p < .001; Std.
f = 0.02, 95% CI [7.45e—03, 0.02].

Neural Index of Resource Availability During Encoding Words at Positions k + 1 Increases
as a Function of Word Frequency at Position k, Partitioned Into Five Bins (a) or 20 Bins (b)
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See the online article for the color version of this figure.

Appendix C

Additional Analysis Considering Alternative Interpretation of the Sequential Subsequent Memory Effect

In the sequential subsequent memory effect, the results showed
that more available resources at recalled item X are associated with
better memory at item X, , ;. However, one potential confound in
this effect is the contiguity effect in recall probability between
nearby items. Specifically, the contiguity effect indicates that when
item X is retrieved, then the next retrieved item is likely to be X . 4
(kand k + 1 are the serial positions during encoding; Kahana, 1996).
Therefore, the existing difference on the neural index based on the
comparison between encoding item X, and X, , ; might be
influenced by factors related to the retrieval phase. To rule out this
interpretation of the identified neural index, we separated the case
where both items X} and X; , ; were recalled into “far” and “near”
conditions based on the recall phase. The “near” condition included
item X, and item X, , ; that were recalled adjacently, and the “far”
condition included words that were recalled far apart, that is, all
nonadjacent recalls.

We repeated the analysis. Compared to Figure 5, Appendix
Figure Cla shows additional results where the power spectrum
pattern for encoding words at X is different in the “far” condition
and “near” condition. The neural index value is shown in Appendix
Figure Clc. In both “far” and “near” conditions, more resources are
related to successful recall of the next word X, | (“near”: M = 0.56,
SE = 0.05; “far”: M = 0.44, SE = 0.05), with significantly higher
index values, “near”: #87) = 5.83, p < .001, d = 0.76; “far”: #(87) =
4.34, p < .001, d = 0.50, compared with where the word X} , | was
not recalled (M = 0.19, SE = 0.05). The “near” condition has a
significantly higher index than the “far” condition, #(87) =2.11,p =
.04, d =0.25.

Since the neural index is higher when X; . | is recalled relative to
unrecalled, regardless of the recall order, the output order is not a
confound to the sequential subsequent memory effect. Moreover,
the difference between the neural indices during the encoding of

(Appendices continue)
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(a) Different power spectrum patterns when encoding recalled words at position k for subsequently recalled versus

unrecalled items encoded at position k + 1, further separated into “far” and “near” conditions. (b) Different power spectrum
patterns when encoding unrecalled words at position k for subsequently recalled versus unrecalled items encoded at position
k + 1, conditioned on when items at position k were subsequently unrecalled. (c) The neural index of resource availability when
encoding items at position k, conditioned on whether items at position k and k + 1 were recalled together, recalled separately, or
unrecalled. See the online article for the color version of this figure.

Asterisks indicate a significant difference between groups (*** p < .001).

items that were recalled near or far apart later can be interpreted in
the SAC framework. According to the latest versions of SAC, when
items are encoded, they are bound to their context, which includes
information about other items. The strength of these item-context
links determines the strength of the contiguity effects (Popov &
Reder, 2020). In turn, the amount of resources available at encoding

determines the strength of those item-context links. Therefore, a
prediction of the verbal model (although not implemented
computationally yet) would be that when there are more resources
available during the encoding of two neighboring items, these items
would be more likely to be recalled together later, which is
consistent with this additional analysis.

Appendix D

Per-Participant Level Model Fitting and Results

The SAC model has always been fitted to averaged group data via
Monte Carlo simulations (Popov & Reder, 2020), and we followed
this tradition when obtaining the group-level model. Specifically,
calculating the resources available at each trial requires knowing the
resources available on each trial before that, which depends on the
specific sequence of word frequencies. At the group-level fitting, the
original model iterates over trials, a process that is time-consuming.
However, at the per-participant level, instead of fitting via Monte
Carlo simulations, we fit by a new analytical solution for the
simplified model presented in this article (detailed in Appendix E).
This much faster model fitting process given by the analytical
solution makes it possible for us to fit the model to each individual
subject. Given the limited data available for each participants, we
reduce the complexity of the model by only fitting four out of five of
the model parameters. We assume that only the depletion rate d,
recovery rate r, retrieval threshold Opp,;, and retrieval noise G.p; vary
among subjects, while the scaling parameter T remains constant

across subject which is set as the estimated group-level parameter (t
= 0.2). The model was fit to each participant using maximum
likelihood 400 times with different starting parameters. A total of 32
participants were excluded because we could not uniquely identify a
single set of parameters for them.

Appendix Figures D1 and D2 plot the fits of models at the
participant level. First, despite the large variability in the serial
position curves of individual subjects (e.g., steepness of the primacy
gradient, the location of the asymptote before the recency effect
appears, overall levels of recall), the model provided striking fits to
each subject’s primacy function (see Appendix Figure DI).
Therefore, modeling the primacy effect as resulting from resource
depletion and recovery is able to explain not only the aggregated
primacy effect but also the individual differences in it (with the
exception of one subject who showed no primacy effect).

Furthermore, the model also provides a good fit to individual
differences in the magnitude of the sequential frequency effect (see

(Appendices continue)
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Primacy Serial Position Effect for Each Participant Captured by the SAC Model
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Appendix Figure D2, mean recall level removed to highlight slope).
To estimate numerically how well the model fits the slope of the
sequential frequency effect at the level of individual participants,
we fit two mixed regression models: (a) regressing the observed
recall probability as a function of prior item frequency, with random
slopes for each participant, and (b) the same but for the model
predicted probability as a dependent variable. Then, we calculated

The title of each subplot starting with LTP is the subject identifier used in the PEERS data set. SAC = Source of Activation Confusion. See the online

the correlation between the random subject slopes in the two
regression model: r(86) = 0.57, p < .001. This result indicates that
the model does a decent job at capturing individual differences in
the strength of the sequential frequency effect, just by varying the
resource-depletion-and-recovery parameters across participants. The
distribution of individual parameter values is shown in Appendix
Figure D3.

(Appendices continue)
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Figure D2
Sequential Frequency Effect for Each Participant Captured by the SAC Model
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article for the color version of this figure.

Figure D3
Distribution of Individual SAC Model Parameters—Delta (8), r_Rate (r), Sigma (6,p;), Tau (v), and Theta (8,;)

delta r_rate sigma tau theta

20

count

10

o 1 Rl.... K. .M.I M...

0.00 0.25 0.50 0.75 1.00 0.0 0.1 0.2 00 05 1.0 15 20 0.0 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75
value

0

Note. SAC = Source of Activation Confusion.
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Appendix E

Derivation of Model Equations

Here, we show how to derive Equation 6 in the main text from
Equations 1 to 5. Let W; denote the amount of available resources at
the beginning of the ith position in a study list. According to
Equation 5 from the main text (ignoring the fact that resources
cannot exceed a fixed maximum):

Wi=Wiii = Weemict = Wepiiot + 15, (ED)

where
Weemi = T(1 = Beem)*Wis (E2)
Wepii = 8(Wi = Weemi) = 8(W; = t(1 = Beni)*W;),  (E3)

substituting the terms from Equation E1 with the ones from
Equations E2 to E3, we get:
Wi = (Wi—l - Wsem,i—l) - 6(Vvi—l - Wsem,i—l) + rti
= (Wi—l - Wsem,i—])(l - 6) + rti
= (Wi—l - T(l - Bsem,i—l)zwi—l)(l - 6) + rti
=Wi—l(l_T(l_Bsem,i—1)2)(l_6) +rti' (E4)
Equation E4 specifies how to calculate W; based on the resources
available on the previous trial and the model parameters, but still
requires us to loop over trials in order to calculate the resources
for each. By unpacking Equation E4, we can arrive at an equation
for W; that only depends on the initial amount of resources and
model parameters. For convenieces, let us use the following
substitution symbols (assuming for simplicity constant interstim-
ulus interval):
Fi = (l _T(l - Bsem,i)z)
D=1-%
R =rt. (ES)

Then Equation E4 becomes:

W,‘ = Wi—lFi—lD + R. (E6)

Using Equation E6, we can write out the resources for several
sequential positions starting from 1 onwards like this:
w,=1
Wy=WFiD+R
Wy=W,F,D + R
= (WF\D+R)F,D + R
= W,F,F,D* + RF,D + R
W,= W3F3D + R
= (W FF,D?* + RF,D + R)F3D + R
= W,F,F,F3D? + RF,F;D* + RF;D + R. (E7)

The pattern above is clear. It can be shown that this generalizes to:
i—1 i—1 i—1

W; =W D" [[Fe+RY D[] Fe+R (E8)
k=1 =2 k=j

When the initial resources are fixed to 1, as in our simulation, and
we expand the substituted terms, we get:

Wi = (l - S)i_l ﬁ(l - T(l _Bsem,k)z)
k=1

I

- i—1
+rty (1=8) 7 [J(1 = (1 = Bewa)?) + rt.  (E9)
k=j

J

I
S}

In Equation E9, the available resources on trial i, W;, no longer
require calculating first the resources available on preceding trials. It
depends only on the model parameters and the sequence of prior
base-level strength of the semantic nodes B, for all studied words
until trial i.
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